Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Glob Chang Biol ; 28(22): 6807-6822, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36073184

RESUMEN

The Brazilian Cerrado is one of the most biodiverse savannas in the world, yet 46% of its original cover has been cleared to make way for crops and pastures. These extensive land-use transitions (LUTs) are expected to influence regional climate by reducing evapotranspiration (ET), increasing land surface temperature (LST), and ultimately reducing precipitation. Here, we quantify the impacts of LUTs on ET and LST in the Cerrado by combining MODIS satellite data with annual land use and land cover maps from 2006 to 2019. We performed regression analyses to quantify the effects of six common LUTs on ET and LST across the entire gradient of Cerrado landscapes. Results indicate that clearing forests for cropland or pasture increased average LST by ~3.5°C and reduced mean annual ET by 44% and 39%, respectively. Transitions from woody savannas to cropland or pasture increased average LST by 1.9°C and reduced mean annual ET by 27% and 21%, respectively. Converting native grasslands to cropland or pasture increased average LST by 0.9 and 0.6°C, respectively. Conversely, grassland-to-pasture transitions increased mean annual ET by 15%. To date, land changes have caused a 10% reduction in water recycled to the atmosphere annually and a 0.9°C increase in average LST across the biome, compared to the historic baseline under native vegetation. Global climate changes from increased atmospheric greenhouse gas concentrations will only exacerbate these effects. Considering potential future scenarios, we found that abandoning deforestation control policies or allowing legal deforestation to continue (at least 28.4 Mha) would further reduce yearly ET (by -9% and -3%, respectively) and increase average LST (by +0.7 and +0.3°C, respectively) by 2050. In contrast, policies encouraging zero deforestation and restoration of the 5.2 Mha of illegally deforested areas would partially offset the warming and drying impacts of land-use change.


O Cerrado brasileiro é uma das savanas mais biodiversas do mundo. Apesar disso, 46% da sua cobertura original foi desmatada para dar lugar a cultivos agrícolas e pastos. Estas extensas transições de uso do solo (LUT) têm o potencial de influenciar o clima regional, reduzindo a evapotranspiração (ET), aumentando a temperatura da superfície terrestre (LST) e por fim reduzindo a precipitação. O objetivo deste estudo foi quantificar os impactos de LUTs sobre ET e LST no Cerrado, combinando dados do satélite MODIS com mapas anuais de uso e cobertura do solo de 2006-2019. Foram realizadas análises de regressão para quantificar os efeitos de seis LUTs usuais sobre ET e LST, ao longo de todo o gradiente de paisagens do Cerrado. Os resultados indicaram que a retirada de florestas para dar lugar à agricultura ou pastagem aumentou a LST média em ~3.5°C e reduziu a ET média anual em 44% e 39%, respectivamente. Transições de formações savânicas para agricultura ou pastagem aumentaram a LST média em 1.9°C e reduziram a ET média anual em 27% e 21%, respectivamente. A conversão de campos nativos para agricultura ou pastagem aumentou a LST média em 0.9 e 0.6°C, respectivamente. Em contrapartida, transições de formações campestres nativas para pastagens aumentaram a ET média anual em 15%. Até o momento, as mudanças de uso do solo causaram redução de 10% da água reciclada para a atmosfera anualmente e aumento de 0.9°C da LST média ao longo do bioma, em comparação com a linha de base histórica sob vegetação nativa. As mudanças climáticas globais decorrentes do aumento das concentrações atmosféricas de gases do efeito estufa irão exacerbar esses efeitos. Considerando potenciais cenários futuros, observou-se que o abandono das políticas de controle do desmatamento ou o avanço do desmatamento legal (ao menos 28.4 Mha) reduziriam a ET anual (em −9% e −3%, respectivamente) e aumentariam a LST média (em +0.7 e +0.3ºC, respectivamente) até 2050. Por outro lado, políticas que promovam desmatamento zero e restauração dos 5.2 Mha de áreas ilegalmente desmatadas compensariam parte dos impactos de aquecimento e seca causados por alterações de uso do solo.


Asunto(s)
Ecosistema , Gases de Efecto Invernadero , Agricultura , Conservación de los Recursos Naturales , Bosques , Agua
3.
Proc Natl Acad Sci U S A ; 117(6): 3015-3025, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-31988116

RESUMEN

Maintaining the abundance of carbon stored aboveground in Amazon forests is central to any comprehensive climate stabilization strategy. Growing evidence points to indigenous peoples and local communities (IPLCs) as buffers against large-scale carbon emissions across a nine-nation network of indigenous territories (ITs) and protected natural areas (PNAs). Previous studies have demonstrated a link between indigenous land management and avoided deforestation, yet few have accounted for forest degradation and natural disturbances-processes that occur without forest clearing but are increasingly important drivers of biomass loss. Here we provide a comprehensive accounting of aboveground carbon dynamics inside and outside Amazon protected lands. Using published data on changes in aboveground carbon density and forest cover, we track gains and losses in carbon density from forest conversion and degradation/disturbance. We find that ITs and PNAs stored more than one-half (58%; 41,991 MtC) of the region's carbon in 2016 but were responsible for just 10% (-130 MtC) of the net change (-1,290 MtC). Nevertheless, nearly one-half billion tons of carbon were lost from both ITs and PNAs (-434 MtC and -423 MtC, respectively), with degradation/disturbance accounting for >75% of the losses in 7 countries. With deforestation increasing, and degradation/disturbance a neglected but significant source of region-wide emissions (47%), our results suggest that sustained support for IPLC stewardship of Amazon forests is critical. IPLCs provide a global environmental service that merits increased political protection and financial support, particularly if Amazon Basin countries are to achieve their commitments under the Paris Climate Agreement.


Asunto(s)
Carbono , Cambio Climático , Conservación de los Recursos Naturales , Bosque Lluvioso , Biomasa , Carbono/análisis , Carbono/química , Carbono/metabolismo , Ciclo del Carbono , Ríos
4.
Glob Chang Biol ; 25(9): 2855-2868, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31237398

RESUMEN

Drought, fire, and windstorms can interact to degrade tropical forests and the ecosystem services they provide, but how these forests recover after catastrophic disturbance events remains relatively unknown. Here, we analyze multi-year measurements of vegetation dynamics and function (fluxes of CO2 and H2 O) in forests recovering from 7 years of controlled burns, followed by wind disturbance. Located in southeast Amazonia, the experimental forest consists of three 50-ha plots burned annually, triennially, or not at all from 2004 to 2010. During the subsequent 6-year recovery period, postfire tree survivorship and biomass sharply declined, with aboveground C stocks decreasing by 70%-94% along forest edges (0-200 m into the forest) and 36%-40% in the forest interior. Vegetation regrowth in the forest understory triggered partial canopy closure (70%-80%) from 2010 to 2015. The composition and spatial distribution of grasses invading degraded forest evolved rapidly, likely because of the delayed mortality. Four years after the experimental fires ended (2014), the burned plots assimilated 36% less carbon than the Control, but net CO2 exchange and evapotranspiration (ET) had fully recovered 7 years after the experimental fires ended (2017). Carbon uptake recovery occurred largely in response to increased light-use efficiency and reduced postfire respiration, whereas increased water use associated with postfire growth of new recruits and remaining trees explained the recovery in ET. Although the effects of interacting disturbances (e.g., fires, forest fragmentation, and blowdown events) on mortality and biomass persist over many years, the rapid recovery of carbon and water fluxes can help stabilize local climate.


Asunto(s)
Dióxido de Carbono , Incendios , Brasil , Ecosistema , Bosques , Árboles
5.
Sci Rep ; 8(1): 13478, 2018 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-30194382

RESUMEN

Agricultural intensification offers potential to grow more food while reducing the conversion of native ecosystems to croplands. However, intensification also risks environmental degradation through emissions of the greenhouse gas nitrous oxide (N2O) and nitrate leaching to ground and surface waters. Intensively-managed croplands and nitrogen (N) fertilizer use are expanding rapidly in tropical regions. We quantified fertilizer responses of maize yield, N2O emissions, and N leaching in an Amazon soybean-maize double-cropping system on deep, highly-weathered soils in Mato Grosso, Brazil. Application of N fertilizer above 80 kg N ha-1 yr-1 increased maize yield and N2O emissions only slightly. Unlike experiences in temperate regions, leached nitrate accumulated in deep soils with increased fertilizer and conversion to cropping at N fertilization rates >80 kg N ha-1, which exceeded maize demand. This raises new questions about the capacity of tropical agricultural soils to store nitrogen, which may determine when and how much nitrogen impacts surface waters.


Asunto(s)
Producción de Cultivos , Fertilizantes , Glycine max/crecimiento & desarrollo , Nitrógeno , Suelo/química , Zea mays/crecimiento & desarrollo , Brasil , Nitrógeno/química , Nitrógeno/farmacología
6.
Proc Natl Acad Sci U S A ; 114(29): 7653-7658, 2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28674015

RESUMEN

The 2012 Brazilian Forest Code governs the fate of forests and savannas on Brazil's 394 Mha of privately owned lands. The government claims that a new national land registry (SICAR), introduced under the revised law, could end illegal deforestation by greatly reducing the cost of monitoring, enforcement, and compliance. This study evaluates that potential, using data from state-level land registries (CAR) in Pará and Mato Grosso that were precursors of SICAR. Using geospatial analyses and stakeholder interviews, we quantify the impact of CAR on deforestation and forest restoration, investigating how landowners adjust their behaviors over time. Our results indicate rapid adoption of CAR, with registered properties covering a total of 57 Mha by 2013. This suggests that the financial incentives to join CAR currently exceed the costs. Registered properties initially showed lower deforestation rates than unregistered ones, but these differences varied by property size and diminished over time. Moreover, only 6% of registered producers reported taking steps to restore illegally cleared areas on their properties. Our results suggest that, from the landowner's perspective, full compliance with the Forest Code offers few economic benefits. Achieving zero illegal deforestation in this context would require the private sector to include full compliance as a market criterion, while state and federal governments develop SICAR as a de facto enforcement mechanism. These results are relevant to other tropical countries and underscore the importance of developing a policy mix that creates lasting incentives for sustainable land-use practices.


Asunto(s)
Conservación de los Recursos Naturales/economía , Conservación de los Recursos Naturales/legislación & jurisprudencia , Bosques , Agricultura/métodos , Brasil , Análisis Costo-Beneficio , Geografía , Política Pública , Árboles
7.
Ecol Appl ; 27(1): 193-207, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28052498

RESUMEN

Intensive cropland agriculture commonly increases streamwater solute concentrations and export from small watersheds. In recent decades, the lowland tropics have become the world's largest and most important region of cropland expansion. Although the effects of intensive cropland agriculture on streamwater chemistry and watershed export have been widely studied in temperate regions, their effects in tropical regions are poorly understood. We sampled seven headwater streams draining watersheds in forest (n = 3) or soybeans (n = 4) to examine the effects of soybean cropping on stream solute concentrations and watershed export in a region of rapid soybean expansion in the Brazilian state of Mato Grosso. We measured stream flows and concentrations of NO3- , PO43- , SO42- , Cl- , NH4+ , Ca2+ , Mg2+ , Na+ , K+ , Al3+ , Fe3+ , and dissolved organic carbon (DOC) biweekly to monthly to determine solute export. We also measured stormflows and stormflow solute concentrations in a subset of watersheds (two forest, two soybean) during two/three storms, and solutes and δ18 O in groundwater, rainwater, and throughfall to characterize watershed flowpaths. Concentrations of all solutes except K+ varied seasonally in streamwater, but only Fe3+ concentrations differed between land uses. The highest streamwater and rainwater solute concentrations occurred during the peak season of wildfires in Mato Grosso, suggesting that regional changes in atmospheric composition and deposition influence seasonal stream solute concentrations. Despite no concentration differences between forest and soybean land uses, annual export of NH4+ , PO43- , Ca2+ , Fe3+ , Na+ , SO42- , DOC, and TSS were significantly higher from soybean than forest watersheds (5.6-fold mean increase). This increase largely reflected a 4.3-fold increase in water export from soybean watersheds. Despite this increase, total solute export per unit watershed area (i.e., yield) remained low for all watersheds (<1 kg NO3- N·ha-1 ·yr-1 , <2.1 kg NH4+ -N·ha-1 ·yr-1 , <0.2 kg PO43- -P·ha-1 ·yr-1 , <1.5 kg Ca2+ ·ha-1 ·yr-1 ). Responses of both streamflows and solute concentrations to crop agriculture appear to be controlled by high soil hydraulic conductivity, groundwater-dominated hydrologic flowpaths on deep soils, and the absence of nitrogen fertilization. To date, these factors have buffered streams from the large increases in solute concentrations that often accompany intensive croplands in other locations.


Asunto(s)
Bosques , Sedimentos Geológicos/química , Glycine max , Ríos/química , Agricultura , Brasil , Estaciones del Año , Glycine max/crecimiento & desarrollo
8.
Glob Chang Biol ; 22(10): 3405-13, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27028754

RESUMEN

Historically, conservation-oriented research and policy in Brazil have focused on Amazon deforestation, but a majority of Brazil's deforestation and agricultural expansion has occurred in the neighboring Cerrado biome, a biodiversity hotspot comprised of dry forests, woodland savannas, and grasslands. Resilience of rainfed agriculture in both biomes likely depends on water recycling in undisturbed Cerrado vegetation; yet little is known about how changes in land-use and land-cover affect regional climate feedbacks in the Cerrado. We used remote sensing techniques to map land-use change across the Cerrado from 2003 to 2013. During this period, cropland agriculture more than doubled in area from 1.2 to 2.5 million ha, with 74% of new croplands sourced from previously intact Cerrado vegetation. We find that these changes have decreased the amount of water recycled to the atmosphere via evapotranspiration (ET) each year. In 2013 alone, cropland areas recycled 14 km(3) less (-3%) water than if the land cover had been native Cerrado vegetation. ET from single-cropping systems (e.g., soybeans) is less than from natural vegetation in all years, except in the months of January and February, the height of the growing season. In double-cropping systems (e.g., soybeans followed by corn), ET is similar to or greater than natural vegetation throughout a majority of the wet season (December-May). As intensification and extensification of agricultural production continue in the region, the impacts on the water cycle and opportunities for mitigation warrant consideration. For example, if an environmental goal is to minimize impacts on the water cycle, double cropping (intensification) might be emphasized over extensification to maintain a landscape that behaves more akin to the natural system.


Asunto(s)
Conservación de los Recursos Naturales , Agua , Agricultura , Brasil , Bosques
9.
Glob Chang Biol ; 22(3): 990-1007, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26700407

RESUMEN

Hydrological connectivity regulates the structure and function of Amazonian freshwater ecosystems and the provisioning of services that sustain local populations. This connectivity is increasingly being disrupted by the construction of dams, mining, land-cover changes, and global climate change. This review analyzes these drivers of degradation, evaluates their impacts on hydrological connectivity, and identifies policy deficiencies that hinder freshwater ecosystem protection. There are 154 large hydroelectric dams in operation today, and 21 dams under construction. The current trajectory of dam construction will leave only three free-flowing tributaries in the next few decades if all 277 planned dams are completed. Land-cover changes driven by mining, dam and road construction, agriculture and cattle ranching have already affected ~20% of the Basin and up to ~50% of riparian forests in some regions. Global climate change will likely exacerbate these impacts by creating warmer and dryer conditions, with less predictable rainfall and more extreme events (e.g., droughts and floods). The resulting hydrological alterations are rapidly degrading freshwater ecosystems, both independently and via complex feedbacks and synergistic interactions. The ecosystem impacts include biodiversity loss, warmer stream temperatures, stronger and more frequent floodplain fires, and changes to biogeochemical cycles, transport of organic and inorganic materials, and freshwater community structure and function. The impacts also include reductions in water quality, fish yields, and availability of water for navigation, power generation, and human use. This degradation of Amazonian freshwater ecosystems cannot be curbed presently because existing policies are inconsistent across the Basin, ignore cumulative effects, and overlook the hydrological connectivity of freshwater ecosystems. Maintaining the integrity of these freshwater ecosystems requires a basinwide research and policy framework to understand and manage hydrological connectivity across multiple spatial scales and jurisdictional boundaries.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Ecosistema , Agua Dulce/análisis , Agricultura , Cambio Climático , Hidrología , Minería , Ríos , América del Sur
10.
Proc Natl Acad Sci U S A ; 111(17): 6347-52, 2014 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-24733937

RESUMEN

Interactions between climate and land-use change may drive widespread degradation of Amazonian forests. High-intensity fires associated with extreme weather events could accelerate this degradation by abruptly increasing tree mortality, but this process remains poorly understood. Here we present, to our knowledge, the first field-based evidence of a tipping point in Amazon forests due to altered fire regimes. Based on results of a large-scale, long-term experiment with annual and triennial burn regimes (B1yr and B3yr, respectively) in the Amazon, we found abrupt increases in fire-induced tree mortality (226 and 462%) during a severe drought event, when fuel loads and air temperatures were substantially higher and relative humidity was lower than long-term averages. This threshold mortality response had a cascading effect, causing sharp declines in canopy cover (23 and 31%) and aboveground live biomass (12 and 30%) and favoring widespread invasion by flammable grasses across the forest edge area (80 and 63%), where fires were most intense (e.g., 220 and 820 kW ⋅ m(-1)). During the droughts of 2007 and 2010, regional forest fires burned 12 and 5% of southeastern Amazon forests, respectively, compared with <1% in nondrought years. These results show that a few extreme drought events, coupled with forest fragmentation and anthropogenic ignition sources, are already causing widespread fire-induced tree mortality and forest degradation across southeastern Amazon forests. Future projections of vegetation responses to climate change across drier portions of the Amazon require more than simulation of global climate forcing alone and must also include interactions of extreme weather events, fire, and land-use change.


Asunto(s)
Sequías , Incendios , Árboles/fisiología , Biomasa , Brasil , Clima , Humedad , Temperatura , Factores de Tiempo , Presión de Vapor , Agua
11.
Philos Trans R Soc Lond B Biol Sci ; 368(1619): 20120153, 2013 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-23610164

RESUMEN

Large-scale cattle and crop production are the primary drivers of deforestation in the Amazon today. Such land-use changes can degrade stream ecosystems by reducing connectivity, changing light and nutrient inputs, and altering the quantity and quality of streamwater. This study integrates field data from 12 catchments with satellite-derived information for the 176,000 km(2) upper Xingu watershed (Mato Grosso, Brazil). We quantify recent land-use transitions and evaluate the influence of land management on streamwater temperature, an important determinant of habitat quality in small streams. By 2010, over 40 per cent of catchments outside protected areas were dominated (greater than 60% of area) by agriculture, with an estimated 10,000 impoundments in the upper Xingu. Streams in pasture and soya bean watersheds were significantly warmer than those in forested watersheds, with average daily maxima over 4°C higher in pasture and 3°C higher in soya bean. The upstream density of impoundments and riparian forest cover accounted for 43 per cent of the variation in temperature. Scaling up, our model suggests that management practices associated with recent agricultural expansion may have already increased headwater stream temperatures across the Xingu. Although increased temperatures could negatively impact stream biota, conserving or restoring riparian buffers could reduce predicted warming by as much as fivefold.


Asunto(s)
Agricultura/métodos , Ríos , Temperatura , Brasil , Conservación de los Recursos Naturales/métodos , Ecosistema , Monitoreo del Ambiente/métodos , Lluvia , Tecnología de Sensores Remotos , Estaciones del Año , Glycine max , Agua
12.
Philos Trans R Soc Lond B Biol Sci ; 368(1619): 20120173, 2013 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-23610176

RESUMEN

The Brazilian state of Mato Grosso was a global deforestation hotspot in the early 2000s. Deforested land is used predominantly to produce meat for distal consumption either through cattle ranching or soya bean for livestock feed. Deforestation declined dramatically in the latter part of the decade through a combination of market forces, policies, enforcement and improved monitoring. This study assesses how representative the national-level drivers underlying Mato Grosso's export-oriented deforestation are in other tropical forest countries based on agricultural exports, commercial agriculture and urbanization. We also assess how pervasive the governance and technical monitoring capacity that enabled Mato Grosso's decline in deforestation is in other countries. We find that between 41 and 54 per cent of 2000-2005 deforestation in tropical forest countries (other than Brazil) occurred in countries with drivers similar to Brazil. Very few countries had national-level governance and capacity similar to Brazil. Results suggest that the ecological, hydrological and social consequences of land-use change for export-oriented agriculture as discussed in this Theme Issue were applicable in about one-third of all tropical forest countries in 2000-2005. However, the feasibility of replicating Mato Grosso's success with controlling deforestation is more limited. Production landscapes to support distal consumption similar to Mato Grosso are likely to become more prevalent and are unlikely to follow a land-use transition model with increasing forest cover.


Asunto(s)
Agricultura/economía , Conservación de los Recursos Naturales/economía , Transportes , Clima Tropical , Remodelación Urbana/economía , Agricultura/métodos , Animales , Brasil , Bovinos , Conservación de los Recursos Naturales/métodos , Ecosistema , Remodelación Urbana/métodos
13.
Philos Trans R Soc Lond B Biol Sci ; 368(1619): 20120425, 2013 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-23610178

RESUMEN

The expansion and intensification of soya bean agriculture in southeastern Amazonia can alter watershed hydrology and biogeochemistry by changing the land cover, water balance and nutrient inputs. Several new insights on the responses of watershed hydrology and biogeochemistry to deforestation in Mato Grosso have emerged from recent intensive field campaigns in this region. Because of reduced evapotranspiration, total water export increases threefold to fourfold in soya bean watersheds compared with forest. However, the deep and highly permeable soils on the broad plateaus on which much of the soya bean cultivation has expanded buffer small soya bean watersheds against increased stormflows. Concentrations of nitrate and phosphate do not differ between forest or soya bean watersheds because fixation of phosphorus fertilizer by iron and aluminium oxides and anion exchange of nitrate in deep soils restrict nutrient movement. Despite resistance to biogeochemical change, streams in soya bean watersheds have higher temperatures caused by impoundments and reduction of bordering riparian forest. In larger rivers, increased water flow, current velocities and sediment flux following deforestation can reshape stream morphology, suggesting that cumulative impacts of deforestation in small watersheds will occur at larger scales.


Asunto(s)
Agricultura/métodos , Productos Agrícolas/crecimiento & desarrollo , Glycine max/crecimiento & desarrollo , Calidad del Agua , Brasil , Conservación de los Recursos Naturales/métodos , Ecosistema , Hidrología , Nitratos/química , Fósforo/química , Ríos/química , Suelo/química , Temperatura
14.
Proc Natl Acad Sci U S A ; 109(4): 1341-6, 2012 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-22232692

RESUMEN

From 2006 to 2010, deforestation in the Amazon frontier state of Mato Grosso decreased to 30% of its historical average (1996-2005) whereas agricultural production reached an all-time high. This study combines satellite data with government deforestation and production statistics to assess land-use transitions and potential market and policy drivers associated with these trends. In the forested region of the state, increased soy production from 2001 to 2005 was entirely due to cropland expansion into previously cleared pasture areas (74%) or forests (26%). From 2006 to 2010, 78% of production increases were due to expansion (22% to yield increases), with 91% on previously cleared land. Cropland expansion fell from 10 to 2% of deforestation between the two periods, with pasture expansion accounting for most remaining deforestation. Declining deforestation coincided with a collapse of commodity markets and implementation of policy measures to reduce deforestation. Soybean profitability has since increased to pre-2006 levels whereas deforestation continued to decline, suggesting that antideforestation measures may have influenced the agricultural sector. We found little evidence of direct leakage of soy expansion into cerrado in Mato Grosso during the late 2000s, although indirect land-use changes and leakage to more distant regions are possible. This study provides evidence that reduced deforestation and increased agricultural production can occur simultaneously in tropical forest frontiers, provided that land is available and policies promote the efficient use of already-cleared lands (intensification) while restricting deforestation. It remains uncertain whether government- and industry-led policies can contain deforestation if future market conditions favor another boom in agricultural expansion.


Asunto(s)
Agricultura/métodos , Comercio/tendencias , Conservación de los Recursos Naturales/métodos , Glycine max , Política Pública , Agricultura/estadística & datos numéricos , Agricultura/tendencias , Brasil , Conservación de los Recursos Naturales/estadística & datos numéricos , Conservación de los Recursos Naturales/tendencias , Historia del Siglo XXI
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...